Table of Contents

Installation**Functionality**── MLB Standings on Date data from baseball-reference.com ─── baseballr 1.5.0 ──ℹ Data updated: 2023-02-16 04:22:33 EST# A tibble: 5 × 8Tm W L `W-L%` GB RS RA `pythW-L%`<chr> <int> <int> <dbl> <chr> <int> <int> <dbl>1 WSN 54 48 0.529 -- 422 391 0.5352 NYM 54 50 0.519 1.0 368 373 0.4943 ATL 46 58 0.442 9.0 379 449 0.4234 MIA 42 62 0.404 13.0 370 408 0.4555 PHI 41 64 0.39 14.5 386 511 0.374Rows: 764Columns: 30$ bbref_id <chr> "547989", "554429", "542436", "571431", "501303", "346793", "…$ season <int> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2…$ Name <chr> "Manny Machado", "Matt Duffy", "Jose Altuve", "Adam Eaton", "…$ Age <dbl> 22, 24, 25, 26, 32, 21, 27, 28, 36, 28, 29, 29, 27, 29, 27, 2…$ Level <chr> "Maj-AL", "Maj-NL", "Maj-AL", "Maj-AL", "Maj-AL", "Maj-AL", "…$ Team <chr> "Baltimore", "San Francisco", "Houston", "Chicago", "Texas", …$ G <dbl> 59, 59, 57, 58, 58, 58, 59, 58, 59, 57, 55, 57, 57, 58, 56, 5…$ PA <dbl> 266, 264, 262, 262, 260, 259, 259, 258, 257, 257, 255, 255, 2…$ AB <dbl> 237, 248, 244, 230, 211, 224, 239, 235, 231, 233, 213, 218, 2…$ R <dbl> 36, 33, 30, 37, 48, 35, 32, 29, 37, 27, 50, 37, 36, 25, 38, 4…$ H <dbl> 66, 71, 81, 74, 71, 79, 54, 66, 75, 48, 65, 56, 61, 51, 78, 5…$ X1B <dbl> 43, 54, 53, 56, 47, 51, 34, 37, 48, 30, 34, 32, 35, 33, 66, 2…$ X2B <dbl> 10, 12, 19, 12, 14, 17, 6, 17, 16, 11, 13, 13, 15, 10, 7, 13,…$ X3B <dbl> 0, 2, 3, 1, 1, 4, 1, 0, 2, 1, 2, 4, 0, 1, 3, 0, 4, 0, 1, 1, 0…$ HR <dbl> 13, 3, 6, 5, 9, 7, 13, 12, 9, 6, 16, 7, 11, 7, 2, 20, 9, 8, 8…$ RBI <dbl> 32, 30, 18, 31, 34, 32, 27, 40, 53, 21, 50, 19, 31, 39, 23, 4…$ BB <dbl> 26, 15, 10, 23, 39, 18, 16, 17, 21, 21, 34, 33, 21, 39, 12, 3…$ IBB <dbl> 1, 0, 1, 1, 1, 0, 0, 6, 1, 1, 0, 1, 1, 5, 0, 4, 3, 3, 7, 2, 2…$ uBB <dbl> 25, 15, 9, 22, 38, 18, 16, 11, 20, 20, 34, 32, 20, 34, 12, 35…$ SO <dbl> 42, 35, 28, 55, 51, 38, 68, 56, 29, 53, 46, 62, 41, 48, 27, 7…$ HBP <dbl> 2, 0, 4, 5, 8, 1, 3, 5, 1, 1, 2, 3, 3, 1, 1, 6, 1, 3, 4, 1, 0…$ SH <dbl> 0, 0, 1, 2, 1, 11, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, …$ SF <dbl> 1, 1, 3, 2, 1, 5, 1, 1, 4, 2, 5, 1, 2, 2, 3, 0, 3, 2, 3, 4, 3…$ GDP <dbl> 5, 9, 6, 1, 1, 4, 2, 2, 9, 7, 5, 1, 4, 8, 1, 2, 3, 10, 5, 4, …$ SB <dbl> 6, 8, 11, 9, 2, 10, 0, 0, 0, 3, 3, 4, 5, 4, 24, 2, 1, 0, 6, 0…$ CS <dbl> 4, 0, 4, 4, 0, 2, 0, 0, 0, 1, 0, 1, 3, 2, 7, 2, 3, 0, 2, 0, 0…$ BA <dbl> 0.279, 0.286, 0.332, 0.322, 0.337, 0.353, 0.226, 0.281, 0.325…$ OBP <dbl> 0.353, 0.326, 0.364, 0.392, 0.456, 0.395, 0.282, 0.341, 0.377…$ SLG <dbl> 0.485, 0.387, 0.508, 0.448, 0.540, 0.558, 0.423, 0.506, 0.528…$ OPS <dbl> 0.839, 0.713, 0.872, 0.840, 0.996, 0.953, 0.705, 0.848, 0.906…# A tibble: 30 × 5Team Con_R Con_RA Con_R_Ptile Con_RA_Ptile<chr> <dbl> <dbl> <dbl> <dbl>1 ARI 0.37 0.36 17 152 ATL 0.41 0.4 88 633 BAL 0.4 0.38 70 424 BOS 0.39 0.4 52 635 CHC 0.38 0.41 30 856 CHW 0.39 0.4 52 637 CIN 0.41 0.36 88 158 CLE 0.41 0.4 88 639 COL 0.35 0.34 7 310 DET 0.39 0.38 52 42# … with 20 more rowsRows: 117Columns: 6$ Name <chr> "Edwin Encarnación", "Bryce Harper", "David Ortiz", "Joey Vo…$ Team <chr> "Toronto", "Washington", "Boston", "Cincinnati", "Baltimore",…$ season <int> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2…$ PA <dbl> 216, 248, 213, 251, 253, 260, 245, 255, 223, 241, 223, 259, 2…$ wOBA <dbl> 0.490, 0.450, 0.449, 0.445, 0.434, 0.430, 0.430, 0.422, 0.410…$ wOBA_CON <dbl> 0.555, 0.529, 0.541, 0.543, 0.617, 0.495, 0.481, 0.494, 0.459…── MLB Daily Pitcher data from baseball-reference.com ─────── baseballr 1.5.0 ──ℹ Data updated: 2023-02-16 04:25:41 EST# A tibble: 10 × 11season Name IP ERA SO uBB HBP HR FIP wOBA_…¹ wOBA_…²<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>1 2015 Johnny Cueto 37 1.95 38 4 2 3 2.62 0.21 0.2762 2015 Dallas Keuc… 37 0.73 22 11 0 0 2.84 0.169 0.1513 2015 Sonny Gray 36.1 1.98 25 6 1 1 2.69 0.218 0.2394 2015 Mike Leake 35.2 3.03 25 7 0 5 4.16 0.24 0.2815 2015 Félix Herná… 34.2 1.82 36 6 3 1 2.2 0.225 0.2726 2015 Corey Kluber 34 4.24 36 5 2 2 2.4 0.295 0.3917 2015 Jake Odoriz… 33.2 2.41 26 8 1 0 2.38 0.213 0.2288 2015 Josh Collme… 32.2 2.76 16 3 0 1 2.82 0.29 0.339 2015 Bartolo Col… 32.2 3.31 25 1 0 4 3.29 0.28 0.35710 2015 Zack Greinke 32.2 1.93 27 7 1 2 3.01 0.24 0.274# … with abbreviated variable names ¹​wOBA_against, ²​wOBA_CON_against**Issues****Pull Requests****Breaking Changes**Follow the [SportsDataverse](https://twitter.com/SportsDataverse) on Twitter and star this repo**Our Authors****Our Contributors (they’re awesome)****Citations**

{baseballr} for MLB, MiLB and NCAA Baseball

Saiem Gilani

Saiem GilaniDec 10, 2021

9 min read1682 words

baseballr

CRAN
version CRAN
downloads Version-Number R-CMD-check Lifecycle:maturing Contributors

baseballr is a package written for R focused on baseball analysis. It includes functions for scraping various data from websites, such as FanGraphs.com, Baseball-Reference.com, and baseballsavant.mlb.com. It also includes functions for calculating metrics, such as wOBA, FIP, and team-level consistency over custom time frames.

You can read more about some of the functions and how to use them at its official site as well as this Hardball Times article.

Installation

You can install the CRAN version of baseballr with:

install.packages("baseballr")

You can install the released version of baseballr from GitHub with:

# You can install using the pacman package using the following code:
if (!requireNamespace('pacman', quietly = TRUE)){
  install.packages('pacman')
}
pacman::p_load_current_gh("BillPetti/baseballr")
# Alternatively, using the devtools package:
if (!requireNamespace('devtools', quietly = TRUE)){
  install.packages('devtools')
}
devtools::install_github(repo = "BillPetti/baseballr")

For experimental functions in development, you can install the development branch:

# install.packages("devtools")
devtools::install_github("BillPetti/baseballr", ref = "development_branch")

Functionality

The package consists of two main sets of functions: data acquisition and metric calculation.

For example, if you want to see the standings for a specific MLB division on a given date, you can use the bref_standings_on_date() function. Just pass the year, month, day, and division you want:

library(baseballr)
library(dplyr)
bref_standings_on_date("2015-08-01", "NL East", from = FALSE)
    ## ── MLB Standings on Date data from baseball-reference.com ─── baseballr 1.5.0 ──

    ## ℹ Data updated: 2023-02-16 04:22:33 EST

    ## # A tibble: 5 × 8
    ##   Tm        W     L `W-L%` GB       RS    RA `pythW-L%`
    ##   <chr> <int> <int>  <dbl> <chr> <int> <int>      <dbl>
    ## 1 WSN      54    48  0.529 --      422   391      0.535
    ## 2 NYM      54    50  0.519 1.0     368   373      0.494
    ## 3 ATL      46    58  0.442 9.0     379   449      0.423
    ## 4 MIA      42    62  0.404 13.0    370   408      0.455
    ## 5 PHI      41    64  0.39  14.5    386   511      0.374

Right now the function works as far as back as 1994, which is when both leagues split into three divisions.

You can also pull data for all hitters over a specific date range. Here are the results for all hitters from August 1st through October 3rd during the 2015 season:

data <- bref_daily_batter("2015-08-01", "2015-10-03")
data %>%
  dplyr::glimpse()
    ## Rows: 764
    ## Columns: 30
    ## $ bbref_id <chr> "547989", "554429", "542436", "571431", "501303", "346793", "…
    ## $ season   <int> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2…
    ## $ Name     <chr> "Manny Machado", "Matt Duffy", "Jose Altuve", "Adam Eaton", "…
    ## $ Age      <dbl> 22, 24, 25, 26, 32, 21, 27, 28, 36, 28, 29, 29, 27, 29, 27, 2…
    ## $ Level    <chr> "Maj-AL", "Maj-NL", "Maj-AL", "Maj-AL", "Maj-AL", "Maj-AL", "…
    ## $ Team     <chr> "Baltimore", "San Francisco", "Houston", "Chicago", "Texas", …
    ## $ G        <dbl> 59, 59, 57, 58, 58, 58, 59, 58, 59, 57, 55, 57, 57, 58, 56, 5…
    ## $ PA       <dbl> 266, 264, 262, 262, 260, 259, 259, 258, 257, 257, 255, 255, 2…
    ## $ AB       <dbl> 237, 248, 244, 230, 211, 224, 239, 235, 231, 233, 213, 218, 2…
    ## $ R        <dbl> 36, 33, 30, 37, 48, 35, 32, 29, 37, 27, 50, 37, 36, 25, 38, 4…
    ## $ H        <dbl> 66, 71, 81, 74, 71, 79, 54, 66, 75, 48, 65, 56, 61, 51, 78, 5…
    ## $ X1B      <dbl> 43, 54, 53, 56, 47, 51, 34, 37, 48, 30, 34, 32, 35, 33, 66, 2…
    ## $ X2B      <dbl> 10, 12, 19, 12, 14, 17, 6, 17, 16, 11, 13, 13, 15, 10, 7, 13,…
    ## $ X3B      <dbl> 0, 2, 3, 1, 1, 4, 1, 0, 2, 1, 2, 4, 0, 1, 3, 0, 4, 0, 1, 1, 0…
    ## $ HR       <dbl> 13, 3, 6, 5, 9, 7, 13, 12, 9, 6, 16, 7, 11, 7, 2, 20, 9, 8, 8…
    ## $ RBI      <dbl> 32, 30, 18, 31, 34, 32, 27, 40, 53, 21, 50, 19, 31, 39, 23, 4…
    ## $ BB       <dbl> 26, 15, 10, 23, 39, 18, 16, 17, 21, 21, 34, 33, 21, 39, 12, 3…
    ## $ IBB      <dbl> 1, 0, 1, 1, 1, 0, 0, 6, 1, 1, 0, 1, 1, 5, 0, 4, 3, 3, 7, 2, 2…
    ## $ uBB      <dbl> 25, 15, 9, 22, 38, 18, 16, 11, 20, 20, 34, 32, 20, 34, 12, 35…
    ## $ SO       <dbl> 42, 35, 28, 55, 51, 38, 68, 56, 29, 53, 46, 62, 41, 48, 27, 7…
    ## $ HBP      <dbl> 2, 0, 4, 5, 8, 1, 3, 5, 1, 1, 2, 3, 3, 1, 1, 6, 1, 3, 4, 1, 0…
    ## $ SH       <dbl> 0, 0, 1, 2, 1, 11, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, …
    ## $ SF       <dbl> 1, 1, 3, 2, 1, 5, 1, 1, 4, 2, 5, 1, 2, 2, 3, 0, 3, 2, 3, 4, 3…
    ## $ GDP      <dbl> 5, 9, 6, 1, 1, 4, 2, 2, 9, 7, 5, 1, 4, 8, 1, 2, 3, 10, 5, 4, …
    ## $ SB       <dbl> 6, 8, 11, 9, 2, 10, 0, 0, 0, 3, 3, 4, 5, 4, 24, 2, 1, 0, 6, 0…
    ## $ CS       <dbl> 4, 0, 4, 4, 0, 2, 0, 0, 0, 1, 0, 1, 3, 2, 7, 2, 3, 0, 2, 0, 0…
    ## $ BA       <dbl> 0.279, 0.286, 0.332, 0.322, 0.337, 0.353, 0.226, 0.281, 0.325…
    ## $ OBP      <dbl> 0.353, 0.326, 0.364, 0.392, 0.456, 0.395, 0.282, 0.341, 0.377…
    ## $ SLG      <dbl> 0.485, 0.387, 0.508, 0.448, 0.540, 0.558, 0.423, 0.506, 0.528…
    ## $ OPS      <dbl> 0.839, 0.713, 0.872, 0.840, 0.996, 0.953, 0.705, 0.848, 0.906…

In terms of metric calculation, the package allows the user to calculate the consistency of team scoring and run prevention for any year using team_consistency():

team_consistency(2015)
    ## # A tibble: 30 × 5
    ##    Team  Con_R Con_RA Con_R_Ptile Con_RA_Ptile
    ##    <chr> <dbl>  <dbl>       <dbl>        <dbl>
    ##  1 ARI    0.37   0.36          17           15
    ##  2 ATL    0.41   0.4           88           63
    ##  3 BAL    0.4    0.38          70           42
    ##  4 BOS    0.39   0.4           52           63
    ##  5 CHC    0.38   0.41          30           85
    ##  6 CHW    0.39   0.4           52           63
    ##  7 CIN    0.41   0.36          88           15
    ##  8 CLE    0.41   0.4           88           63
    ##  9 COL    0.35   0.34           7            3
    ## 10 DET    0.39   0.38          52           42
    ## # … with 20 more rows

You can also calculate wOBA per plate appearance and wOBA on contact for any set of data over any date range, provided you have the data available.

Simply pass the proper data frame to woba_plus:

data %>%
  dplyr::filter(PA > 200) %>%
  woba_plus %>%
  dplyr::arrange(desc(wOBA)) %>%
  dplyr::select(Name, Team, season, PA, wOBA, wOBA_CON) %>%
  dplyr::glimpse()
    ## Rows: 117
    ## Columns: 6
    ## $ Name     <chr> "Edwin Encarnación", "Bryce Harper", "David Ortiz", "Joey Vo…
    ## $ Team     <chr> "Toronto", "Washington", "Boston", "Cincinnati", "Baltimore",…
    ## $ season   <int> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2…
    ## $ PA       <dbl> 216, 248, 213, 251, 253, 260, 245, 255, 223, 241, 223, 259, 2…
    ## $ wOBA     <dbl> 0.490, 0.450, 0.449, 0.445, 0.434, 0.430, 0.430, 0.422, 0.410…
    ## $ wOBA_CON <dbl> 0.555, 0.529, 0.541, 0.543, 0.617, 0.495, 0.481, 0.494, 0.459…

You can also generate these wOBA-based stats, as well as FIP, for pitchers using the fip_plus() function:

bref_daily_pitcher("2015-04-05", "2015-04-30") %>%
  fip_plus() %>%
  dplyr::select(season, Name, IP, ERA, SO, uBB, HBP, HR, FIP, wOBA_against, wOBA_CON_against) %>%
  dplyr::arrange(dplyr::desc(IP)) %>%
  head(10)
    ## ── MLB Daily Pitcher data from baseball-reference.com ─────── baseballr 1.5.0 ──

    ## ℹ Data updated: 2023-02-16 04:25:41 EST

    ## # A tibble: 10 × 11
    ##    season Name            IP   ERA    SO   uBB   HBP    HR   FIP wOBA_…¹ wOBA_…²
    ##     <int> <chr>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>   <dbl>
    ##  1   2015 Johnny Cueto  37    1.95    38     4     2     3  2.62   0.21    0.276
    ##  2   2015 Dallas Keuc…  37    0.73    22    11     0     0  2.84   0.169   0.151
    ##  3   2015 Sonny Gray    36.1  1.98    25     6     1     1  2.69   0.218   0.239
    ##  4   2015 Mike Leake    35.2  3.03    25     7     0     5  4.16   0.24    0.281
    ##  5   2015 Félix Herná…  34.2  1.82    36     6     3     1  2.2    0.225   0.272
    ##  6   2015 Corey Kluber  34    4.24    36     5     2     2  2.4    0.295   0.391
    ##  7   2015 Jake Odoriz…  33.2  2.41    26     8     1     0  2.38   0.213   0.228
    ##  8   2015 Josh Collme…  32.2  2.76    16     3     0     1  2.82   0.29    0.33
    ##  9   2015 Bartolo Col…  32.2  3.31    25     1     0     4  3.29   0.28    0.357
    ## 10   2015 Zack Greinke  32.2  1.93    27     7     1     2  3.01   0.24    0.274
    ## # … with abbreviated variable names ¹​wOBA_against, ²​wOBA_CON_against

Issues

Please leave any suggestions or bugs in the Issues section.

Pull Requests

Pull request are welcome, but I cannot guarantee that they will be accepted or accepted quickly. Please make all pull requests to the development branch for review.

Breaking Changes

Full News on Releases

Follow the SportsDataverse on Twitter and star this repo

Twitter
Follow

GitHub
stars

Our Authors

Our Contributors (they’re awesome)

Citations

To cite the baseballr R package in publications, use:

BibTex Citation

@misc{petti_gilani_2021,
  author = {Bill Petti and Saiem Gilani},
  title = {baseballr: The SportsDataverse's R Package for Baseball Data.},
  url = {https://billpetti.github.io/baseballr/},
  year = {2021}
}

Share this post: